
What this deck is not for?
This is not a replacement for Red Hat training. This is a small “taste” of
Ansible Automation Platform and meant to help people understand
what is possible for network engineers with automation. Please refer
to https://www.redhat.com/en/services/training-and-certification for
official training

Google Slides source link (Red Hat internal):
https://docs.google.com/presentation/d/1PIT-kGAGMVEEK8PsuZC
oyzFC5CIzLBwdnftnUsdUNWQ/edit?usp=sharing

Name:
Network Automation Workshop Deck

Purpose:
This slide deck is part of a training course designed as an introduction
to Ansible for network engineers and operators. The slides are meant
to be taught in conjunction with hands-on exercises with a lab
topology of Automation controller + 4 network devices.

Last updated:
Sep 21, 2021 (check history for older versions)

What this deck is for?
This deck corresponds to the prescriptive exercises available on
https://ansible.github.io/workshops/exercises/ansible_network/

The upstream source for exercises and provisioner are provided on
https://github.com/ansible/workshops

How to use this deck

1

Overview

https://www.redhat.com/en/services/training-and-certification
https://ansible.github.io/workshops/exercises/ansible_network/
https://github.com/ansible/workshops

Network Automation
Workshop

2

Introduction to Ansible for
network engineers and operators

3

● Timing
● Breaks
● Takeaways

Understanding the format of this class

Housekeeping

4

What you will learn

▸ Introduction to Ansible automation

▸ How Ansible works for network automation

▸ Understanding Ansible modules and playbooks

▸ Executing Ansible playbooks to

make configuration changes

▸ Gather information (Ansible facts)

▸ Network Resource Modules

▸ Using Automation controller to operationalize

automation for your enterprise

▸ Major Automation controller features - RBAC,

workflows

5

Ansible Network Automation Workshop

Topics Covered:

▸ What is the Ansible Automation Platform?

▸ What can it do?

▸ Why Network Automation?

▸ How Ansible Network Automation works

Introduction

Red Hat Ansible Platform technical deck

6

Automation happens when
one person meets a problem
they never want to solve again

Too many unintegrated, domain-specific tools

Many organizations share the same challenge

Red Hat Ansible Platform technical deck

7

SecOpsNetwork ops Devs/DevOps IT ops

Why the Red Hat Ansible Automation Platform?

8

Simplify automation creation

and management across

multiple domains.

AgentlessSimple

Easily integrate with

hybrid environments.

Powerful

Orchestrate complex

processes at enterprise scale.

Why the Ansible Automation Platform?

Clouds Storage

Your entire IT footprint

Why the Red Hat Ansible Automation Platform?

9

Automate the deployment and management of automation

Do this...

Orchestrate

Firewalls

Manage configurations Deploy applications Provision / deprovision Deliver continuously Secure and comply

Load balancers Applications Containers Virtualization platforms

Servers And more ...Network devices

On these...

Different teams a single platform

Red Hat Ansible Platform technical deck

10

Break down silos

Cloud

IT opsDevs/DevOps SecOps Network ops

Line of business

Edge Datacenter

Consistent governance

What makes a platform?

11

Automation controller
Automation

hub
Automation

services catalog

Fueled by an
open source community

Insights for Ansible
Automation Platform

Ansible command line

Ansible Cloud ServicesOn-premises

Ansible content domains

Infrastructure

Cloud Network Security
Linux Windows

Content creators

Operators

Domain experts

Users

Automation and IT modernization

12

Red Hat named a Leader in The Forrester

Wave™
Infrastructure Automation Platforms, Q3 2020

▸ “Ansible continues to grow quickly, particularly among

enterprises that are automating networks. The solution excels

at providing a variety of deployment options and acting as a

service broker to a wide array of other automation tools.”

▸ “Red Hat’s solution is a good fit for customers that want a

holistic automation platform that integrates with a wide array

of other vendors’ infrastructure.”

Source:
Gardner, Chris, Glenn O'Donnell, Robert Perdonii, and Diane Lynch. "The Forrester Wave™: Infrastructure Automation Platforms, Q3 2020." Forrester, 10 Aug. 2020.
DISCLAIMER: The Forrester Wave™ is copyrighted by Forrester Research, Inc. Forrester and Forrester Wave™ are trademarks of Forrester Research, Inc. The Forrester Wave™ is a graphical representation of
Forrester’s call on a market and is plotted using a detailed spreadsheet with exposed scores, weightings, and comments. Forrester does not endorse any vendor, product, or service depicted in the Forrester
Wave™. Information is based on best available resources. Opinions reflect judgment at the time and are subject to change.

Received highest possible score in the criteria of:

● Deployment functionality

● Product Vision

● Partner Ecosystem

● Supporting products and services

● Community support

● Planned product enhancements

https://reprints2.forrester.com/#/assets/2/431/RES157471/report

13

Ansible Network Automation Workshop

▸ Network Automation

Use-Case

68%
of 77 respondents indicated they still use command line
interface (CLI) on individual devices as the primary
method of making network changes.

Source: Gartner, Market Guide for Network Automation and Orchestration Tools, September 2020

15

Why hasn’t networking changed?
Networking vendors are the trusted advisors

PEOPLE

● Domain specific skill sets

● Vendor oriented experience

● Siloed organizations

● Legacy operational practices

PRODUCTS

● Infrastructure-focused features

● CLI-based interfaces

● Siloed technologies

● Monolithic, proprietary platforms

Next generation networking

16

New device types
entering networks at

scale, with distributed
computing.

Digital transformation

Automation to effectively manage increasing diversity and scope

Hybrid
cloud

Data-intensive
computing

Edge / IoT
Devices

Numerous
deployment forms
across the globe

Responding with new
applications is only as fast as

the slowest process

Artificial intelligence, digital
applications and growing data

driving connectivity

What is Ansible Network Automation?

Ansible network automation is our content domain focused on

networking use cases. The goal is to provide network teams with

the tools and an operational framework to implement

next-generation network operations, manage network

infrastructure-as-code, and better support digital transformation

by connecting teams across the IT organization.

Ansible network automation is a set of Certified Content

Collections designed to streamline and operationalize network

operations across multiple platforms and vendors.

.
3

Controllers

Switches

Firewalls

Load
Balancers

Routers

IP Address Mgmt

18

Modernize and scale network operations
Choose what network tasks to automate at your own pace

TRADITIONAL NETWORK
OPERATIONS

● Traditional culture

● Risk averse

● Proprietary solutions

● Siloed from others

● “Paper” practices, MOPs

● “Artisanal” networks

NEXT-GEN NETWORK
OPERATIONS

● Community culture

● Risk-aware

● Open solutions

● Teams of heroes

● Infrastructure as code

● Virtual prototyping / DevOps

19

Configuration Management Network ValidationInfrastructure Awareness

Examine operational state to to
check network connectivity and
protocols and enhance
operational workflows to help
measure network intent.

Platform agnostic configuration
management to standardize and
enforce best-practices.

Track network resources
through facts gathering, to
perform preventive
maintenance, reducing outage
risks and costs of unnecessary
hardware-refresh.

What does it do?
Automate your network with a single tool

Arista EOS

Cisco IOS
Cisco NX-OS
Cisco IOS-XR

Juniper Junos

F5 BIG-IP
F5 BIG-IQ

Infoblox NIOS

CIsco ACI
Cisco DNA Center
Cisco NAE
Cisco MSO

ansible.utils

A10 ACOS

Nvidia
Cumulus Linux

VyOS

Dell OS9
Dell OS10

SONiC

Pureport FabricOpenvSwitch

20

PHYSICAL
NETWORKING

VIRTUAL
NETWORKING

SDN
CONTROLLER

What is it for?

21

Start Small, Think Big
Three high-level benefits for successful network operations

Configuration Management
● Automate backup & restores
● Scoped Config Management

Infrastructure Awareness
● Dynamic Documentation
● Compliance and traceability

Network Validation
● Validate operational steady-state
● Roll back if configuration changes don’t meet goals

22

Ansible Network Ecosystem

ENTERPRISE
FIREWALLS

SWITCHES ROUTERS LOAD
BALANCERS CONTROLLERS

IP ADDRESS
 MGMT

Configuration Management Network ValidationInfrastructure Awareness

Config Backup and Restore Dynamic Documentation

Deep diving on use-cases

Operational State Validation

Scoped Config Management Automated NetOps Network Compliance

23

Network Automation Journey

How do we centralise
our processes?

How do we orchestrate
our processes?

How can we simplify a task or
set of tasks?

C
om

pl
ex

ity

OPPORTUNISTIC SYSTEMATIC INSTITUTIONALIZED

Ansible Network Automation

 • Backup & Restore
 • Dynamic Documentation

• Scoped Config Management
• Network Compliance

 • Operational State Validation
 • Automated NetOps

24

25

Start Small
Quick automation victories for network engineers

Config Backup and Restore Dynamic Documentation Scoped Config Management
Use Ansible facts to gain information

 • Read-only, no production config change

 • Dynamic Documentation and reporting

 • Understand your network

Ubiquitous first touch use case

 • Gain confidence in automation quickly

 • First steps towards network as code

 • Quickly recover network steady state

Focus on high yield victories

 • Automate VLANs, ACLs and SNMP config

 • Introduce source of truth concepts

 • Enforce Configuration policy

✓

✓ ✓ ✓

Infrastructure as code

 • Data centric automation

 • Deploy configuration pipelines

 • GitOps for Network Automation

Think Big
Institutionalizing automation into your organization

Automated NetOpsOperational State Validation Network Compliance
Going beyond config management

 • Parsing operational state to structured values

 • Schema validation and verification

 • Enhance operational workflows

Respond quickly and consistently

 • Security and config compliance for network

 • Remove human error from security responses

 • Enforce Configuration policies and hardening

✓

✓ ✓

26

27

Ansible Network Automation Workshop

Section 1
Ansible Basics

Topics Covered:

▸ Understanding Inventory

▸ An example Ansible Playbook

Automation hub

Ansible content experience

The automation lifecycle

Create

28

Domain experts

Ansible content domains
Infrastructure

Cloud Network Security
Linux Windows

Content creators

Build

Discover

Trust

Red Hat cloud / on-premises

Ansible playbooks

29

- name: install and start apache
 hosts: web
 become: yes

 tasks:
 - name: httpd package is present

 yum:
 name: httpd
 state: latest

 - name: latest index.html file is present
 template:
 src: files/index.html
 dest: /var/www/html/

 - name: httpd is started
 service:
 name: httpd
 state: started

30

What makes up an Ansible playbook?

PluginsModulesPlays

- name: install and start apache
 hosts: web
 become: yes

What am I automating?

Ansible plays

31

What are they?

Top level specification for a group of tasks.

Will tell that play which hosts it will execute on

and control behavior such as fact gathering or

privilege level.

Building blocks for playbooks

Multiple plays can exist within an Ansible

playbook that execute on different hosts.

The “tools in the toolkit”

Ansible modules

32

What are they?

Parametrized components with internal logic,

representing a single step to be done.

The modules “do” things in Ansible.

Language

Usually Python, or Powershell for Windows

setups. But can be of any language.

- name: latest index.html file ...
 template:
 src: files/index.html
 dest: /var/www/html/

The “extra bits”

Ansible plugins

33

What are they?

Plugins are pieces of code that augment

Ansible’s core functionality. Ansible uses a

plugin architecture to enable a rich, flexible,

and expandable feature set.

Example become plugin:

- name: install and start apache
 hosts: web
 become: yes

Example filter plugins:

{{ some_variable | to_nice_json }}
{{ some_variable | to_nice_yaml }}

The systems that a playbook runs against

Ansible Inventory

34

What are they?

List of systems in your infrastructure that

automation is executed against

[web]
webserver1.example.com
webserver2.example.com

[db]
dbserver1.example.com

[switches]
leaf01.internal.com
leaf02.internal.com

Reusable automation actions

Ansible roles

35

What are they?

Group your tasks and variables of your

automation in a reusable structure. Write roles

once, and share them with others who have

similar challenges in front of them.

- name: install and start apache
 hosts: web
 roles:
 - common
 - webservers

Simplified and consistent content delivery

Collections

36

What are they?

Collections are a data structure containing

automation content:

▸ Modules

▸ Playbooks

▸ Roles

▸ Plugins

▸ Docs

▸ Tests

37

nginx_core
├── MANIFEST.json
├── playbooks
│ ├── deploy-nginx.yml
│ └── ...
├── plugins
├── README.md
└── roles
 ├── nginx
 │ ├── defaults
 │ ├── files
 │ │ └── …
 │ ├── tasks
 │ └── templates
 │ └── ...
 ├── nginx_app_protect
 └── nginx_config

- name: Install NGINX Plus
 hosts: all
 tasks:
 - name: Install NGINX
 include_role:
 name: nginxinc.nginx
 vars:
 nginx_type: plus

 - name: Install NGINX App Protect
 include_role:
 name: nginxinc.nginx_app_protect
 vars:
 nginx_app_protect_setup_license: false
 nginx_app_protect_remove_license: false
 nginx_app_protect_install_signatures: false

deploy-nginx.yml

Collections

90+
Network SecurityInfrastructure Cloud

certified platforms

38

39

Ansible Network Automation Workshop

How is network
automation different?

Network Devices /
 API Endpoints

Linux / Windows
HostsModule code is copied

to the managed node,
executed, then
removed

Module code is
executed locally on the
control node

Ansible Automation Platform

Ansible Automation Platform

Local Execution

Remote Execution

Network Automation compared to servers

Ansible
Automation Platform

Network Connection Plugins

Cisco IOS-XE

Arista EOS

Juniper Junos
netconf

network_cli

httpapi

ansible_connection

▶ netconf - XML over netconf

example: Juniper Junos

▶ network_cli - command line over SSH

example: Cisco IOS-XE, Arista EOS

▶ httpapi - vendor API

example: Arista eAPI, Cisco NX-API

https://docs.ansible.com/ansible/latest/plugins/connection.html

Red Hat
Enterprise Linux

ssh

Use your vendor connection of choice

https://docs.ansible.com/ansible/latest/plugins/connection.html

Understanding Inventory

rtr1 ansible_host=18.220.156.59
rtr2 ansible_host=18.221.53.11
rtr3 ansible_host=13.59.242.237
rtr4 ansible_host=3.16.82.231
rtr5
rtr6

Understanding Inventory - Groups
There is always a group called "all" by default

Groups can be nested

[cisco]
rtr1 ansible_host=18.220.156.59 private_ip=172.16.184.164
[arista]
rtr2 ansible_host=18.221.53.11 private_ip=172.17.229.213
rtr4 ansible_host=3.16.82.231 private_ip=172.17.209.186
[juniper]
rtr3 ansible_host=13.59.242.237 private_ip=172.16.39.75

[routers:children]
cisco
juniper
arista

[cisco]
rtr1 ansible_host=18.220.156.59 private_ip=172.16.184.164
[arista]
rtr2 ansible_host=18.221.53.11 private_ip=172.17.229.213
rtr4 ansible_host=3.16.82.231 private_ip=172.17.209.186
[juniper]
rtr3 ansible_host=13.59.242.237 private_ip=172.16.39.75

[cisco:vars]
ansible_user=ec2-user
ansible_network_os=ios
ansible_connection=network_cli

Group variables apply for all
devices in that group

Host variables apply to the
host and override group vars

Understanding Inventory - Variables

44

● A playbook is a list of plays.

● Each play is a list of tasks.

● Tasks invoke modules.

● A playbook can contain more than

one play.

A Sample Ansible Playbook

- name: configure VLANs
 hosts: cisco
 gather_facts: false
 tasks:
 - name: VLANs task
 cisco.nxos.vlans:
 config:
 - vlan_id: 5
 name: WEB
 - vlan_id: 10

Lab Time
Exercise 1 - Exploring the lab environment

red.ht/network-workshop-1

In this lab you will explore the lab environment and build familiarity with the
lab inventory.

Approximate time: 10 mins

https://red.ht/network-workshop-1

47

Ansible Network Automation Workshop

Section 2
Executing Ansible

Topics Covered:

▸ An Ansible Play

▸ Ansible Modules

▸ Execution Environments

▸ Running an Ansible Playbook

Red Hat Ansible Platform technical deck: Create

48

Automation Execution Environments

Ansible CoreLibrariesCollections
Execution

Environments Universal Base Image

Components needed for automation, packaged in a cloud-native way

UBI

Ansible Core

Collections Dependencies

Execution
environment

builder

Execution
Environment

Content
Creator

Private
automation hub

Development cycle of an automation execution environment

Build, create, publish

Automation
content

navigator

Content
Creator

How to develop, test and run containerized Ansible content

Develop, test, run

Supported

Scalable

Playbook Execution
Environments

Content
Creator

ansible-builder

pull/create

Builder and Navigator

ansible-navigator

execute

Execution Environment

playbook Execution Environment

+

Another Ansible Playbook Example

- name: snmp ro/rw string configuration
 hosts: cisco
 gather_facts: false

 tasks:
 - name: ensure snmp strings are present
 cisco.ios.config:
 lines:
 - snmp-server community ansible-public RO
 - snmp-server community ansible-private RW

● The name parameter describes the Ansible Play
● Target devices using the hosts parameter
● Optionally disable gather_facts

Ansible Playbook - Play definition

- name: snmp ro/rw string configuration
 hosts: cisco
 gather_facts: false

Modules
Modules do the actual work in Ansible, they are what
gets executed in each playbook task.
● Typically written in Python (but not limited to it)
● Modules can be idempotent
● Modules take user input in the form of parameters

 tasks:
 - name: ensure snmp strings are present
 cisco.ios.config:
 lines:
 - snmp-server community ansible-public RO
 - snmp-server community ansible-private RW

● namespace.collection.facts
● namespace.collection.command
● namespace.collection.config
● namespace.collection.resource

More modules depending on platform

Ansible modules for network automation typically references the vendor OS
followed by the module name.

Arista EOS = arista.eos.

Cisco IOS/IOS-XE = cisco.ios

Cisco NX-OS = cisco.nxos

Cisco IOS-XR = cisco.iosxr

F5 BIG-IP = f5networks.f5_bigip_bigip.

Juniper Junos = junipsnetworks.junos.

VyOS = vyos.vyos.

Network modules

Where it all starts

A playbook run

▸ A playbook is interpreted and run against one or

multiple hosts - task by task. The order of the

tasks defines the execution.

▸ In each task, the module does the actual work.

Using the latest ansible-navigator command

Running an Ansible Playbook

What is ansible-navigator?

ansible-navigator command line utility and

text-based user interface (TUI) for running

and developing Ansible automation content.

It replaces the previous command used to run

playbooks “ansible-playbook”.

$ ansible-navigator run playbook.yml

Bye ansible-playbook, Hello ansible-navigator

ansible-navigator

How do I use ansible-navigator?

As previously mentioned, it replaces the

ansible-playbook command.

As such it brings two methods of running

playbooks:

▸ Direct command-line interface

▸ Text-based User Interface (TUI)

Direct command-line interface method
$ ansible-navigator run playbook.yml -m stdout

Text-based User Interface method
$ ansible-navigator run playbook.yml

ansible command ansible-navigator command

ansible-config ansible-navigator config

ansible-doc ansible-navigator doc

ansible-inventory ansible-navigator inventory

ansible-playbook ansible-navigator run

Mapping to previous Ansible commands

ansible-navigator

Common subcommands

ansible-navigator

Name Description CLI Example Colon command
within TUI

collections Explore available collections ansible-navigator collections
--help

:collections

config Explore the current ansible configuration ansible-navigator config --help :config

doc Review documentation for a module or
plugin

ansible-navigator doc --help :doc

images Explore execution environment images ansible-navigator images --help :images

inventory Explore and inventory ansible-navigator inventory
--help

:inventory

replay Explore a previous run using a playbook
artifact

ansible-navigator replay --help :replay

run Run a playbook ansible-navigator run --help :run

welcome Start at the welcome page ansible-navigator welcome --help :welcome

[student1@ansible networking-workshop]$ ansible-navigator playbook.yml --mode stdout

PLAY [snmp ro/rw string configuration] ***

TASK [ensure snmp strings are present] **
changed: [rtr1]

PLAY RECAP **
rtr1 : ok=1 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Running a playbook

- name: snmp ro/rw string configuration
 hosts: cisco
 gather_facts: false

 tasks:
 - name: ensure snmp strings are present
 cisco.ios.config:
 lines:
 - snmp-server community ansible-public RO
 - snmp-server community ansible-private RW

[student1@ansible networking-workshop]$ ansible-navigator playbook.yml --mode stdout -v
Using /home/student1/.ansible.cfg as config file

PLAY [snmp ro/rw string configuration] ***

TASK [ensure that the desired snmp strings are present] **
changed: [rtr1] => changed=true
 ansible_facts:
 discovered_interpreter_python: /usr/bin/python
 banners: {}
 commands:
 - snmp-server community ansible-public RO
 - snmp-server community ansible-private RW
 updates:
 - snmp-server community ansible-public RO
 - snmp-server community ansible-private RW

PLAY RECAP ***
rtr1 : ok=1 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Increase the level of verbosity by adding more "v's" -vvvv

Displaying output

Lab Time
Exercise 2 - Execute your first network automation playbook

red.ht/network-workshop-2

In this lab you will use Ansible to update the configuration of routers. This
exercise will not have you create an Ansible Playbook; you will use an existing
one.

Approximate time: 15 mins

https://red.ht/network-workshop-2

64

Ansible Network Automation Workshop

Section 3
Network Facts

Topics Covered:

▸ Ansible Documentation

▸ Facts for Network Devices

▸ The debug module

red.ht/NetworkDocs

“Ansible for Network Automation” Documentation

https://red.ht/NetworkDocs

https://docs.ansible.com/

● Documentation is required as
part of module submission

● Multiple Examples for every
module

● Broken into relevant sections

Module Documentation

https://docs.ansible.com/

Accessing the Ansible docs

$ ansible-navigator doc -l -m stdout
add_host
amazon.aws.aws_az_facts
amazon.aws.aws_caller_facts
amazon.aws.aws_caller_info
.
.
.
.
.

With the use of the latest command utility
ansible-navigator, one can trigger access to all the
modules available to them as well as details on
specific modules.

A formal introduction to ansible-navigator and
how it can be used to run playbooks in the
following exercise.

Cisco IOS

 arista.eos.facts

 cisco.ios.facts

 junipernetworks.junos.facts

Fact modules

Arista EOS

Juniper Junos

What are facts?
Structured data, the Ansible way

cisco# show version
Cisco IOS XE Software, Version 16.09.02
Cisco IOS Software [Fuji], Virtual XE Software
(X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 16.9.2,
RELEASE SOFTWARE (fc4)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2018 by Cisco Systems, Inc.

<<rest of output removed for slide brevity>>

cisco# ansible -m ios_facts cisco
cisco | SUCCESS => {
 "ansible_facts": {
 "ansible_net_iostype": "IOS-XE",
 "ansible_net_version": "16.09.02",
 "ansible_net_serialnum": "9L8KQ482JFZ",
 "ansible_net_model": "CSR1000V",

<<rest of output removed for slide brevity>>

Cisco IOS output Ansible output

Ansible Automation Platform facts
Network automation begins and ends with facts

Network native
configuration

Convert to
structured data

"ansible_facts": {
 "ansible_net_iostype": "IOS-XE",
 "ansible_net_version": "16.09.02",
 "ansible_net_serialnum": "9L8KQ482JFZ",
 "ansible_net_model": "CSR1000V",

<<rest of output removed for brevity>>

The debug module is used like a "print" statement in most
programming languages. Variables are accessed
using "{{ }}" - quoted curly braces

Displaying output - The “debug” module

- name: display version
 debug:
 msg: "The IOS version is: {{ ansible_net_version }}"

- name: display serial number
 debug:
 msg: "The serial number is: {{ ansible_net_serialnum }}"

Working with Ansible facts

1. Gather facts 2. Use facts

- name: gather eos facts
 arista.eos.facts:
 gather_subset: config
 gather_network_resources: vlans

- name: print out vlans
 debug:
 var: vlanfacts

- name: gather eos facts
 arista.eos.vlans:
 state: gathered
 registered: vlanfacts

- name: print out vlans
 debug:
 var: ansible_network_resources.vlans

or

- name: retrieve eos facts
 arista.eos.facts:
 gather_subset: config
 gather_network_resources: all

- name: retrieve ios facts
 cisco.ios.facts:
 gather_subset: config
 gather_network_resources: all

- name: retrieve junos facts
 junipernetworks.junos.facts:
 gather_subset: config
 gather_network_resources: all

Arista EOS Juniper JunosCisco IOS-XE

Simple and common approach

Working with Ansible facts

2. Use facts

3 Displayed Results

- name: print out vlans
 debug:
 var: vlanfacts

- name: print out vlans
 debug:
 var: ansible_network_resources.vlans

or

 - name: dmz
 state: active
 vlan_id: 5
 - name: voip
 state: active
 vlan_id: 10
 - name: desktop
 state: active
 vlan_id: 30

playbook

terminal output window

$ ansible-navigator run facts.yml --mode stdout

PLAY [gather information from routers] **

TASK [gather router facts] **
ok: [rtr1]

TASK [display version] **
ok: [rtr1] =>
 msg: 'The IOS version is: 16.09.02'

TASK [display serial number] **
ok: [rtr1] =>
 msg: The serial number is: 964A1H0D1RM

PLAY RECAP **
rtr1 : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Running the Ansible Playbook with verbosity

Structured data is malleable
Create customized network reports

Ansible Automation
Platform

ansible_facts:
 ansible_net_api: cliconf
 ansible_net_fqdn: rtr2
 ansible_net_gather_network_resources:
 - interfaces
 ansible_net_gather_subset:
 - default
 ansible_net_hostname: rtr2
 ansible_net_image: flash:EOS.swi
 ansible_net_model: vEOS
 ansible_net_python_version: 2.7.5
 ansible_net_serialnum:
D00E130991A37B49F970714D8CCF7FCB
 ansible_net_system: eos
 ansible_net_version: 4.22.0F
 ansible_network_resources:
 interfaces:
 - enabled: true
 name: Ethernet1
 - enabled: true
 name: Loopback0
<<rest of output removed for slide
brevity>>

Customized
Report

Build reports with Ansible Facts

Lab Time
Exercise 3 - Ansible Facts

red.ht/network-workshop-3

Demonstration use of Ansible facts on network infrastructure.

Approximate time: 15 mins

https://red.ht/network-workshop-3

79

Ansible Network Automation Workshop

Section 4
Resource Modules

Topics Covered:

▸ Resource modules

▸ state: merged

▸ state: gathered

Network Automation Modules

command

config

facts

resource

run arbitrary commands

retrieve information

generic catch-all configuration
and templating

read and configure specific
network resources

How do we interact with network devices?

Network Automation Modules

command

config

facts

resource

How do we interact with network devices?

namespace.collection.command
Cisco IOS -> cisco.ios.command

namespace.collection.facts
Arista EOS -> arista.eos.facts

namespace.collection.config
Juniper Junos-> junipernetworks.junos.config

namespace.collection.module
Cisco IOS-XR-> cisco.iosxr.acls

82

Network resource modules
Managing device state across different devices and types

Configuration
to code

Built-in logic with commands
and orchestration

Vendor-agnostic data model

Bidirectional with configuration to
facts and facts to configuration

Lab Time
Exercise 4 - Ansible Network Resource Modules

red.ht/network-workshop-4

This exercise will cover configuring VLANs on Arista EOS by building an
Ansible Playbook using the arista.eos.vlans module.

Approximate time: 15 mins

https://red.ht/network-workshop-4

84

Ansible Network Automation Workshop

Section 5
Automation controller

Topics Covered:

▸ What is Automation controller?

▸ Enterprise Features

What makes a platform?

85

Automation controller
Automation

hub
Automation

services catalog

Fueled by an
open source community

Insights for Ansible
Automation Platform

Ansible command line

Ansible Cloud ServicesOn-premises

Ansible content domains

Infrastructure

Cloud Network Security
Linux Windows

Content creators

Operators

Domain experts

Users

Ansible Automation Controller is a UI and RESTful
API allowing you to scale IT automation, manage
complex deployments and speed productivity.

▸ Role-based access control

▸ Deploy entire applications with
 push-button deployment access

▸ All automations are centrally logged

▸ Powerful workflows match your IT processes

What is Ansible Automation Controller?

RBAC

Allow restricting playbook access to
authorized users. One team can use
playbooks in check mode (read-only)
while others have full administrative
abilities.

Push button

An intuitive user interface experience
makes it easy for novice users to
execute playbooks you allow them
access to.

RESTful API

With an API first mentality every feature
and function of controller can be API
driven. Allow seamless integration with
other tools like ServiceNow and
Infoblox.

Workflows

Automation controller’s multi-playbook
workflows chain any number of
playbooks, regardless of whether they
use different inventories, run as
different users, run at once or utilize
different credentials.

Enterprise integrations

Integrate with enterprise authentication
like TACACS+, RADIUS, Azure AD.
Setup token authentication with OAuth
2. Setup notifications with PagerDuty,
Slack and Twilio.

Centralized logging

All automation activity is securely
logged. Who ran it, how they
customized it, what it did, where it
happened - all securely stored and
viewable later, or exported through
Automation controllers API.

Automation controller

Lab Time
Exercise 5: Explore Automation controller

red.ht/network-workshop-5

Explore and understand the Automation controller lab environment.

Approximate time: 15 mins

https://red.ht/network-workshop-5

89

Ansible Network Automation Workshop

Section 6
Job Templates

Topics Covered:

▸ Job Templates

･ Inventory

･ Credentials

･ Projects

Project

Playbook

Anatomy of an Automation Job

Git / Subversion

Credential

Project

Playbook

Anatomy of an Automation Job

Git / Subversion

Credential

Project

Anatomy of an Automation Job

Inventory

Playbook

Git / Subversion

Credential

Project

Anatomy of an Automation Job

Inventory

Automation
controller

Playbook

Git / Subversion

Everything in Automation Controller revolves
around the concept of a Job Template. Job
Templates allow Ansible Playbooks to be
controlled, delegated and scaled for an
organization.

Job templates also encourage the reuse of
Ansible Playbook content and collaboration
between teams.

A Job Template requires:

▸ A Project which contains Ansible
Playbooks

▸ An Inventory to run the job against
▸ A Credential to login to devices.

Job Templates

Project
A project is a logical collection of Ansible
Playbooks, represented in Ansible
Automation Controller.

You can manage Ansible Playbooks and
playbook directories by placing them in a
source code management system supported
by Automation controller including Git, and
Subversion.

Inventory is a collection of hosts (nodes) with
associated data and groupings that Automation
Controller can connect to and manage.

▸ Hosts (nodes)
▸ Groups
▸ Inventory-specific data (variables)
▸ Static or dynamic sources

Inventory

Credentials are utilized by Automation Controller
for authentication with various external
resources:

▸ Connecting to remote machines to run jobs
▸ Syncing with inventory sources
▸ Importing project content from version control

systems
▸ Connecting to and managing network devices

Centralized management of various credentials
allows end users to leverage a secret without
ever exposing that secret to them.

Credentials

Job Templates can be found and created by clicking the Templates
button under the Resources section on the left menu.

Expanding on Job Templates

Job Templates can be launched by clicking the rocketship
button for the corresponding Job Template

Executing an existing Job Template

New Job Templates can be created by clicking the Add button

Creating a new Job Template (1/2)

This New Job Template window is where the inventory, project and credential
are assigned. The red asterisk * means the field is required .

Creating a new Job Template (2/2)

Lab Time
Exercise 6: Creating an Automation controller Job Template

red.ht/network-workshop-6

Demonstrate a network backup configuration job template with Automation
controller.

Approximate time: 15 mins

https://red.ht/network-workshop-6

103

Ansible Network Automation Workshop

Section 7
Survey

Topics Covered:

▸ Understanding Extra Vars

▸ Building a Survey

▸ Self-service IT with Surveys

Controller surveys allow you to configure
how a job runs via a series of questions,
making it simple to customize your jobs in
a user-friendly way.

An Ansible Controller survey is a simple
question-and-answer form that allows
users to customize their job runs.
Combine that with Controller’s
role-based access control, and you can
build simple, easy self-service for your
users.

Surveys

Creating a Survey (1/2)

Once a job template is saved, the survey

menu will have an Add button

Click the button to open the Add Survey

window.

Creating a Survey (2/2)
The Add Survey window allows the job template to prompt users for one or more
questions. The answers provided become variables for use in the Ansible Playbook.

Using a Survey
When launching a job, the user will now be prompted with the survey. The user can
be required to fill out the survey before the job template will execute.

Lab Time
Exercise 7: Creating a Survey

red.ht/network-workshop-7

Demonstrate the use of Automation controller survey feature.

Approximate time: 15 mins

https://red.ht/network-workshop-7

109

Ansible Network Automation Workshop

Section 8
RBAC

Topics Covered:

▸ Understanding Organizations

▸ Understanding Teams

▸ Understanding Users

How to manage access

Role-based access control

▸ Role-based access control system:

Users can be grouped in teams, and roles

can be assigned to the teams.

▸ Rights to edit or use can be assigned

across all objects.

▸ All backed by enterprise authentication if needed.

● An organization is a logical collection of users,
teams, projects, inventories and more. All entities
belong to an organization.

● A user is an account to access Ansible
Automation Controller and its services given the
permissions granted to it.

● Teams provide a means to implement role-based
access control schemes and delegate
responsibilities across organizations.

User Management

Clicking on the Organizations button in the left menu
will open up the Organizations window

Viewing Organizations

Clicking on the Teams buttons in the left menu
will open up the Teams window

Viewing Teams

Clicking on the Users button in the left menu
will open up the Users window

Viewing Users

Lab Time
Exercise 8: Understanding RBAC in Automation controller

red.ht/network-workshop-8

Demonstrate the use of role based access control on Automation controller.

Approximate time: 15 mins

https://red.ht/network-workshop-8

116

Ansible Network Automation Workshop

Section 9
Workflows

Topics Covered:

▸ Understanding Workflows

▸ Branching

▸ Convergence / Joins

▸ Conditional Logic

Lab Time
Exercise 9: Creating a Workflow

red.ht/network-workshop-9

Demonstrate the use of Automation Controller workflow. Workflows allow
you to configure a sequence of disparate job templates (or workflow
templates) that may or may not share inventory, playbooks, or permissions.

Approximate time: 15 mins

https://red.ht/network-workshop-9

Combine automation to create

something bigger

Workflows

▸ Workflows enable the creation of powerful holistic

automation, chaining together multiple pieces of

automation and events.

▸ Simple logic inside these workflows can trigger

automation depending on the success or failure

of previous steps.

Adding a New Template

▸ To add a new Workflow click on the Add button.

This time select the Add workflow template

Creating the Workflow

▸ Fill out the required parameters and click Save.

As soon as the Workflow Template is saved the

Workflow Visualizer will open.

Workflow Visualizer

▸ The Workflow Visualizer will start as a blank

canvas.

▸ Click the green Start button to start building the

workflow.

Backup ConfigsSTART

JT

Deploy Configuration

JT

Restore Config

JT

Check Operational State

JT

Update SOT

WORKFLOW VISUALIZER | Operational State Workflow

JT

Ansible Automation Platform
Using workflows to enhance your automation

123

Ansible Network Automation Workshop

Wrapping up

Topics Covered:

▸ Next Steps

▸ Chat with us

▸ Consulting Services

Learn more

Where to go next

Get started

▸ Workshops

▸ Documents

▸ Youtube

▸ Twitter

▸ Evals
▸ cloud.redhat.com

Get serious

▸ Red Hat Automation Adoption Journey

▸ Red Hat Training

▸ Red Hat Consulting

https://github.com/ansible/workshops
https://docs.ansible.com/
https://www.youtube.com/channel/UCPJo5UY1KsP7J1BuHmiWNzQ
https://twitter.com/ansible
https://www.redhat.com/en/technologies/management/ansible/try-it
https://cloud.redhat.com/
https://www.redhat.com/en/resources/services-journey-automation-adoption-brief
https://www.ansible.com/products/training-certification
https://www.ansible.com/products/consulting

● Slack
https://ansiblenetwork.slack.com
Join by clicking here http://bit.ly/ansibleslack

● IRC
#ansible-network on freenode
http://webchat.freenode.net/?channels=ansible-network

Chat with us

https://ansiblenetwork.slack.com
http://bit.ly/ansibleslack
http://webchat.freenode.net/?channels=ansible-network

● Examples, samples
and demos

● Run network
topologies right on
your laptop

Bookmark the Github organization

 Accelerate standardization and automation of network configuration

127

Challenge Approach Benefits

Slow
Time consuming, labor intensive procedures to
propagate network changes

Speed
Reduce changes from days to hours and drive
simultaneous config across 100s of endpoints

Automate
Encode and execute procedures with
human-readable Ansible playbooks

Chaos
Rising number of devices, environments, and
vendor-specific tooling create sprawl and skills
gaps

Efficiency
Easily combine and execute complex
configuration procedures across environments

Standardize
Automate common tasks using Ansible modules
to abstract vendor-specific details

Errors
Over time, vulnerabilities, patches, and mistakes
undermine known-good configurations.

Reliability
Eliminate human error in production changes

Test
Iteratively refine and validate provisioning and
configuration pre-PROD

Mystery
No living source of truth for which patches,
packages, or configurations are deployed where

Manageability
Centrally track and manage configuration
rollout, drift, patching, and compliance

Catalog
Automate configuration reporting, inventory,
and change tracking across all environments

Red Hat Services

Resources

128

▸ Network automation for everyone (Overview)

▸ Automate your network with Red Hat (Technical)

▸ Online training: Red Hat Ansible for Network Automation

▸ Network Automation web page

▸ Red Hat Ansible Automation Platform blog

red.ht/ansible_trial

https://www.redhat.com/en/resources/network-automation-everyone-ebook
https://www.redhat.com/en/resources/network-automation-technical-e-book
https://www.redhat.com/en/services/training/do457-ansible-network-automation
https://www.ansible.com/use-cases/network-automation
https://www.ansible.com/blog/topic/network-automation
http://red.ht/ansible_trial

linkedin.com/company/red-hat

youtube.com/AnsibleAutomation

facebook.com/ansibleautomation

twitter.com/ansible

github.com/ansible

129

Thank you

Supplemental

130

Ansible Network Automation Workshop

Topics Covered:

▸ Understand group variables

▸ Understand Jinja2

▸ cli_config module

Group variables are variables that are common between two or more devices.
Group variables can be associated with an individual group (e.g. “cisco”) or a nested
group (e.g. routers).

Examples include
● NTP servers
● DNS servers
● SNMP information

Basically network information that is common for that group

Group variables

inventory group_vars

Group variables can be stored in a directory called group_vars in YAML syntax. In
exercise one we covered host_vars and group_vars with relationship to inventory.
What is the difference?

Can be used to set variables to connect
and authenticate to the device.

Examples include:
● Connection plugins (e.g. network_cli)
● Usernames
● Platform types

(ansible_network_os)

Can be used to set variables to configure
on the device.

Examples include:
● VLANs
● Routing configuration
● System services (NTP, DNS, etc)

Inventory versus group_vars directory

At the same directory level as the Ansible Playbook create a folder named group_vars.
Group variable files can simply be named the group name (in this case all.yml)

$ cat group_vars/all.yml

nodes:
 rtr1:
 Loopback100: "192.168.100.1"
 rtr2:
 Loopback100: "192.168.100.2"
 rtr3:
 Loopback100: "192.168.100.3"
 rtr4:
 Loopback100: "192.168.100.4"

Examining a group_vars file

● Ansible has native integration with the Jinja2 templating engine
● Render data models into device configurations
● Render device output into dynamic documentation

Jinja2 enables the user to manipulate variables, apply conditional
logic and extend programmability for network automation.

Jinja2

Variables

Template

cli_config (agnostic)

ios_config:

nxos_config:

iosxr_config:

eos_config

.

.

*os_config:

Network Automation config modules

!
ntp server {{ntp_server}}
!
ip name-server {{name_server}}
!

ntp_server: 192.168.0.250
name_server: 192.168.0.251

!
ip name-server 192.168.0.251
!
ntp server 192.168.0.250
!

rtr1 rtrX
Generated Network Configuration

Jinja2 TemplateVariables

!
ip name-server 192.168.0.251
!
ntp server 192.168.0.250
!

Jinja2 Templating Example (1/2)

nodes:
 rtr1:
 Loopback100: "192.168.100.1"
 rtr2:
 Loopback100: "192.168.100.2"
 rtr3:
 Loopback100: "192.168.100.3"
 rtr4:
 Loopback100: "192.168.100.4"

interface Loopback100
 ip address 192.168.100.1
!

rtr1 rtr2 rtrX
Generated Network Configuration

Jinja2 TemplateVariables

interface Loopback100
 ip address 192.168.100.2
!

interface Loopback100
 ip address X
!

Jinja2 Templating Example (2/2)

{% for interface,ip in nodes[inventory_hostname].items() %}
interface {{interface}}
 ip address {{ip}} 255.255.255.255
{% endfor %}

Agnostic module for network devices that uses the network_cli
connection plugin.

- name: configure network devices
 hosts: rtr1,rtr2
 gather_facts: false
 tasks:
 - name: configure device with config
 cli_config:
 config: "{{ lookup('template', 'template.j2') }}"

The cli_config module

