
1

Introduction to Ansible for Red Hat Enterprise Linux Automation
for System Administrators and Operators

Ansible Linux Automation Workshop

2

What you will learn

▸ Intro to Ansible Automation Platform

▸ How it Works

▸ Understanding modules, tasks, playbooks

▸ How to execute Ansible commands

▸ Using variables and templates

▸ Automation Controller - where it fits in

▸ Automation Controller basics

▸ Major Automation Controller features - RBAC,

workflows

3

Introduction
Topics Covered:

● Why the Ansible Automation Platform?

● What can it do?

Red Hat Ansible Platform technical deck

4

Automation happens when
one person meets a problem
they never want to solve again

Too many unintegrated, domain-specific tools

Many organizations share the same challenge

Red Hat Ansible Platform technical deck

5

SecOpsNetwork ops Devs/DevOps IT ops

Why the Red Hat Ansible Automation Platform?

6

Simplify automation creation

and management across

multiple domains.

AgentlessSimple

Easily integrate with

hybrid environments.

Powerful

Orchestrate complex

processes at enterprise scale.

Why the Ansible Automation Platform?

Clouds Storage

Your entire IT footprint

Why the Red Hat Ansible Automation Platform?

7

Automate the deployment and management of automation

Do this...

Orchestrate

Firewalls

Manage configurations Deploy applications Provision / deprovision Deliver continuously Secure and comply

Load balancers Applications Containers Virtualization platforms

Servers And more ...Network devices

On these...

Different teams a single platform

Red Hat Ansible Platform technical deck

8

Break down silos

Cloud

IT opsDevs/DevOps SecOps Network ops

Line of business

Edge Datacenter

Consistent governance

What makes a platform?

9

Automation controller
Automation

hub
Automation

services catalog

Fueled by an
open source community

Insights for Ansible
Automation Platform

Ansible command line

Ansible Cloud ServicesOn-premises

Ansible content domains

Infrastructure

Cloud Network Security
Linux Windows

Content creators

Operators

Domain experts

Users

INSERT CONFIDENTIAL designator

Automation and IT modernization

10

Red Hat named a Leader in The Forrester

Wave™
Infrastructure Automation Platforms, Q3 2020

▸ “Ansible continues to grow quickly, particularly among

enterprises that are automating networks. The solution excels

at providing a variety of deployment options and acting as a

service broker to a wide array of other automation tools.”

▸ “Red Hat’s solution is a good fit for customers that want a

holistic automation platform that integrates with a wide array

of other vendors’ infrastructure.”

Source:
Gardner, Chris, Glenn O'Donnell, Robert Perdonii, and Diane Lynch. "The Forrester Wave™: Infrastructure Automation Platforms, Q3 2020." Forrester, 10 Aug. 2020.
DISCLAIMER: The Forrester Wave™ is copyrighted by Forrester Research, Inc. Forrester and Forrester Wave™ are trademarks of Forrester Research, Inc. The Forrester Wave™ is a graphical representation of
Forrester’s call on a market and is plotted using a detailed spreadsheet with exposed scores, weightings, and comments. Forrester does not endorse any vendor, product, or service depicted in the Forrester
Wave™. Information is based on best available resources. Opinions reflect judgment at the time and are subject to change.

Received highest possible score in the criteria of:

● Deployment functionality

● Product Vision

● Partner Ecosystem

● Supporting products and services

● Community support

● Planned product enhancements

https://reprints2.forrester.com/#/assets/2/431/RES157471/report

11

Section 1
The Ansible Basics

12

Exercise 1.1
Topics Covered:

● Understanding the Ansible Infrastructure

● Check the prerequisites

Automation hub

Ansible content experience

The automation lifecycle

Create

Red Hat Ansible Platform technical deck: Create

13

Domain experts

Ansible content domains
Infrastructure

Cloud Network Security
Linux Windows

Content creators

Build

Discover

Trust

Red Hat cloud / on-premises

Ansible playbooks

Red Hat Ansible Platform technical deck: Create

14

- name: install and start apache
 hosts: web
 become: yes

 tasks:
 - name: httpd package is present

 yum:
 name: httpd
 state: latest

 - name: latest index.html file is present
 template:
 src: files/index.html
 dest: /var/www/html/

 - name: httpd is started
 service:
 name: httpd
 state: started

Red Hat Ansible Platform technical deck: Create

15

What makes up an Ansible playbook?

PluginsModulesPlays

- name: install and start apache
 hosts: web
 become: yes

What am I automating?

Ansible plays

Red Hat Ansible Platform technical deck: Create

16

What are they?

Top level specification for a group of tasks.

Will tell that play which hosts it will execute on

and control behavior such as fact gathering or

privilege level.

Building blocks for playbooks

Multiple plays can exist within an Ansible

playbook that execute on different hosts.

The “tools in the toolkit”

Ansible modules

Red Hat Ansible Platform technical deck: Create

17

What are they?

Parametrized components with internal logic,

representing a single step to be done.

The modules “do” things in Ansible.

Language

Usually Python, or Powershell for Windows

setups. But can be of any language.

- name: latest index.html file ...
 template:
 src: files/index.html
 dest: /var/www/html/

The “extra bits”

Ansible plugins

Red Hat Ansible Platform technical deck: Create

18

What are they?

Plugins are pieces of code that augment

Ansible’s core functionality. Ansible uses a

plugin architecture to enable a rich, flexible,

and expandable feature set.

Example become plugin:

- name: install and start apache
 hosts: web
 become: yes

Example filter plugins:

{{ some_variable | to_nice_json }}
{{ some_variable | to_nice_yaml }}

The systems that a playbook runs against

Ansible Inventory

Red Hat Ansible Platform technical deck: Create

19

What are they?

List of systems in your infrastructure that

automation is executed against

[web]
webserver1.example.com
webserver2.example.com

[db]
dbserver1.example.com

[switches]
leaf01.internal.com
leaf02.internal.com

Reusable automation actions

Ansible roles

Red Hat Ansible Platform technical deck: Create

20

What are they?

Group your tasks and variables of your

automation in a reusable structure. Write roles

once, and share them with others who have

similar challenges in front of them.

- name: install and start apache
 hosts: web
 roles:
 - common
 - webservers

Simplified and consistent content delivery

Collections

Red Hat Ansible Platform technical deck: Create

21

What are they?

Collections are a data structure containing

automation content:

▸ Modules

▸ Playbooks

▸ Roles

▸ Plugins

▸ Docs

▸ Tests

Red Hat Ansible Platform technical deck: Create

22

nginx_core
├── MANIFEST.json
├── playbooks
│ ├── deploy-nginx.yml
│ └── ...
├── plugins
├── README.md
└── roles
 ├── nginx
 │ ├── defaults
 │ ├── files
 │ │ └── …
 │ ├── tasks
 │ └── templates
 │ └── ...
 ├── nginx_app_protect
 └── nginx_config

- name: Install NGINX Plus
 hosts: all
 tasks:
 - name: Install NGINX
 include_role:
 name: nginxinc.nginx
 vars:
 nginx_type: plus

 - name: Install NGINX App Protect
 include_role:
 name: nginxinc.nginx_app_protect
 vars:
 nginx_app_protect_setup_license: false
 nginx_app_protect_remove_license: false
 nginx_app_protect_install_signatures: false

deploy-nginx.yml

Collections

90+

Why the Red Hat Ansible Automation Platform?

Network SecurityInfrastructure Cloud

certified platforms

23

Network Devices /
 API Endpoints

Linux / Windows
HostsModule code is copied

to the managed node,
executed, then
removed

Module code is
executed locally on the
control node

Ansible Automation Platform

Ansible Automation Platform

Local Execution

Remote Execution

How Ansible Automation Works

25

● Follow the steps in to access environment
● Use the IP provided to you, the script only has example IP
● Which editor do you use on command line?

If you don’t know, we have a short intro

Exercise 1.1

26

Lab Time
Complete exercise 1.1 now in your lab environment

28

Exercise 1.2
Topics Covered:

● Ansible inventories

● Accessing Ansible docs

● Modules and getting help

29

▸ Ansible works against multiple systems in an inventory
▸ Inventory is usually file based
▸ Can have multiple groups
▸ Can have variables for each group or even host

Inventory

Ansible Inventory

Red Hat Ansible Platform technical deck: Create

30

The Basics

An example of a static Ansible inventory

including systems with IP addresses as

well as fully qualified domain name

(FQDN)

[myservers]
10.42.0.2
10.42.0.6
10.42.0.7
10.42.0.8
10.42.0.100
host.example.com

Ansible Inventory - The Basics

31

[app1srv]
appserver01 ansible_host=10.42.0.2
appserver02 ansible_host=10.42.0.3

[web]
node-[1:30]

[web:vars]
apache_listen_port=8080
apache_root_path=/var/www/mywebdocs/

[all:vars]
ansible_user=kev
ansible_ssh_private_key_file=/home/kev/.ssh/id_rsa

Ansible Inventory - Variables

32

[app1srv]
appserver01 ansible_host=10.42.0.2
appserver02 ansible_host=10.42.0.3

[web]
node-[1:30]

[web:vars]
apache_listen_port=8080
apache_root_path=/var/www/mywebdocs/

[all:vars]
ansible_user=ender
ansible_ssh_private_key_file=/home/ender/.ssh/id_rsa

Accessing the Ansible docs

Red Hat Ansible Platform technical deck: Create

33

$ ansible-navigator doc -l -m stdout
add_host
amazon.aws.aws_az_facts
amazon.aws.aws_caller_facts
amazon.aws.aws_caller_info
.
.
.
.
.

With the use of the latest command utility
ansible-navigator, one can trigger access to all the
modules available to them as well as details on
specific modules.

A formal introduction to ansible-navigator and
how it can be used to run playbooks in the
following exercise.

Accessing the Ansible docs

Red Hat Ansible Platform technical deck: Create

34

$ ansible-navigator doc user -m stdout

> ANSIBLE.BUILTIN.USER
(/usr/lib/python3.8/site-packages/ansible/m
odules/user.py)

Manage user accounts and user attributes.
For Windows targets, use the
[ansible.windows.win_user] module
 instead.

Aside from listing a full list of all the modules, you
can use ansible-navigator to provide details about
a specific module.

In this example, we are getting information about
the user module.

Lab Time
Complete exercise 1.2 now in your lab environment

36

Exercise 1.3
Topics Covered:

● Playbooks basics

● Running a playbook

Ansible playbooks

Red Hat Ansible Platform technical deck: Create

37

- name: install and start apache
 hosts: web
 become: yes

 tasks:
 - name: httpd package is present

 yum:
 name: httpd
 state: latest

 - name: latest index.html file is present
 template:
 src: files/index.html
 dest: /var/www/html/

 - name: httpd is started
 service:
 name: httpd
 state: started

A play

Ansible playbooks

Red Hat Ansible Platform technical deck: Create

38

- name: install and start apache
 hosts: web
 become: yes

 tasks:
 - name: httpd package is present

 yum:
 name: httpd
 state: latest

 - name: latest index.html file is present
 template:
 src: files/index.html
 dest: /var/www/html/

 - name: httpd is started
 service:
 name: httpd
 state: started

A task

Ansible playbooks

Red Hat Ansible Platform technical deck: Create

39

- name: install and start apache
 hosts: web
 become: yes

 tasks:
 - name: httpd package is present

 yum:
 name: httpd
 state: latest

 - name: latest index.html file is present
 template:
 src: files/index.html
 dest: /var/www/html/

 - name: httpd is started
 service:
 name: httpd
 state: started

A module

Ansible Colors

40

A task executed as expected, no change was made.

A task executed as expected, making a change

A task failed to execute successfully

Running Playbooks
The most important colors of Ansible

Using the latest ansible-navigator command

Running an Ansible Playbook

Red Hat Ansible Platform technical deck: Create

41

What is ansible-navigator?

ansible-navigator command line utility and

text-based user interface (TUI) for running

and developing Ansible automation content.

It replaces the previous command used to run

playbooks “ansible-playbook”.

$ ansible-navigator run playbook.yml

Bye ansible-playbook, Hello ansible-navigator

ansible-navigator

Red Hat Ansible Platform technical deck: Create

42

How do I use ansible-navigator?

As previously mentioned, it replaces the

ansible-playbook command.

As such it brings two methods of running

playbooks:

▸ Direct command-line interface

▸ Text-based User Interface (TUI)

Direct command-line interface method
$ ansible-navigator run playbook.yml -m stdout

Text-based User Interface method
$ ansible-navigator run playbook.yml

43

ansible command ansible-navigator command

ansible-config ansible-navigator config

ansible-doc ansible-navigator doc

ansible-inventory ansible-navigator inventory

ansible-playbook ansible-navigator run

Mapping to previous Ansible commands

ansible-navigator

44

Common subcommands

ansible-navigator

Name Description CLI Example Colon command
within TUI

collections Explore available collections ansible-navigator collections
--help

:collections

config Explore the current ansible configuration ansible-navigator config --help :config

doc Review documentation for a module or
plugin

ansible-navigator doc --help :doc

images Explore execution environment images ansible-navigator images --help :images

inventory Explore and inventory ansible-navigator inventory
--help

:inventory

replay Explore a previous run using a playbook
artifact

ansible-navigator replay --help :replay

run Run a playbook ansible-navigator run --help :run

welcome Start at the welcome page ansible-navigator welcome --help :welcome

Lab Time
Complete exercise 1.3 now in your lab environment

46

Exercise 1.4
Topics Covered:

● Working with variables

● What are facts?

Ansible playbooks

Red Hat Ansible Platform technical deck: Create

47

- name: variable playbook test
 hosts: localhost

 vars:
 var_one: awesome
 var_two: ansible is
 var_three: "{{ var_two }} {{ var_one }}"

 tasks:
 - name: print out var_three
 debug:
 msg: "{{ var_three }}"

Ansible playbooks

Red Hat Ansible Platform technical deck: Create

48

- name: variable playbook test
 hosts: localhost

 vars:
 var_one: awesome
 var_two: ansible is
 var_three: "{{ var_two }} {{ var_one }}"

 tasks:
 - name: print out var_three
 debug:
 msg: "{{ var_three }}"

ansible is awesome

Ansible Facts

49

 tasks:
 - name: Collect all facts of host
 setup:
 gather_subset:
 - 'all'

▸ Just like variables, really...
▸ … but: coming from the host itself!
▸ Check them out with the setup module

Ansible playbooks

Red Hat Ansible Platform technical deck: Create

50

- name: facts playbook
 hosts: localhost

 tasks:
 - name: Collect all facts of host
 setup:
 gather_subset:
 - ‘all’

$ ansible-navigator run playbook.yml

Ansible Navigator TUI

Red Hat Ansible Platform technical deck: Create

51

PLAY NAME OK CHANGED UNREACHABLE FAILED SKIPPED IGNORED IN PROGRESS TASK COUNT PROGRESS
0│facts playbook 2 0 0 0 0 0 0 2 COMPLETE

RESULT HOST NUMBER CHANGED TASK TASK ACTION DURATION
0│OK localhost 0 False Gathering Facts gather_facts 1s
1│OK localhost 1 False Collect all facts of host setup 1s

PLAY [facts playbook:1]

TASK [Collect all facts of host]

OK: [localhost]
.
.
12 │ ansible_facts:
 13│ ansible_all_ipv4_addresses:
 14│ - 10.0.2.100
 15│ ansible_all_ipv6_addresses:
 16│ - fe80::1caa:f0ff:fe15:23c4

Lab Time
Complete exercise 1.4 now in your lab environment

53

Exercise 1.5
Topics Covered:

● Conditionals

● Handlers

● Loops

Conditionals via VARS

54

 vars:
 my_mood: happy

 tasks:
 - name: task, based on my_mood var
 debug:
 msg: "Yay! I am {{ my_mood }}!"
 when: my_mood == "happy"

Example of using a variable labeled my_mood and
using it as a conditional on a particular task.

Ansible Conditionals

Red Hat Ansible Platform technical deck: Create

55

- name: variable playbook test
 hosts: localhost

 vars:
 my_mood: happy

 tasks:
 - name: task, based on my_mood var
 debug:
 msg: "Yay! I am {{ my_mood }}!"
 when: my_mood == "happy"

 - name: task, based on my_mood var
 debug:
 msg: "Ask at your own risk. I’m {{ my_mood }}!"
 when: my_mood == "grumpy"

Alternatively

Ansible Conditionals w/ Facts

Red Hat Ansible Platform technical deck: Create

56

- name: variable playbook test
 hosts: localhost

 tasks:
 - name: Install apache
 apt:
 name: apache2
 state: latest
 when: ansible_distribution == 'Debian' or
 ansible_distribution == 'Ubuntu'

 - name: Install httpd
 yum:
 name: httpd
 state: latest
 when: ansible_distribution == 'RedHat'

Using Previous Task State

Red Hat Ansible Platform technical deck: Create

57

- name: variable playbook test
 hosts: localhost

 tasks:
 - name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 register: http_results

 - name: Restart httpd
 service:
 name: httpd
 state: restart
 when: httpd_results.changed

Ansible Handler Tasks

Red Hat Ansible Platform technical deck: Create

58

- name: variable playbook test
 hosts: localhost

 tasks:
 - name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd

 handlers:
 - name: restart_httpd
 service:
 name: httpd
 state: restart

Ansible Handler Tasks

Red Hat Ansible Platform technical deck: Create

59

 tasks:
 - name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd

 - name: Standardized index.html file
 copy:
 content: "This is my index.html file for {{ ansible_host }}"
 dest: /var/www/html/index.html
 notify: restart_httpd

If either task
notifies a
changed result,
the handler will be
notified ONCE.

TASK [Ensure httpd package is present] **
ok: [web2]
ok: [web1]

TASK [Standardized index.html file] ***
changed: [web2]
changed: [web1]

NOTIFIED: [restart_httpd] ***
changed: [web2]
changed: [web1] handler runs once

unchanged

changed

Ansible Handler Tasks

Red Hat Ansible Platform technical deck: Create

60

 tasks:
 - name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd

 - name: Standardized index.html file
 copy:
 content: "This is my index.html file for {{ ansible_host }}"
 dest: /var/www/html/index.html
 notify: restart_httpd

TASK [Ensure httpd package is present] **
changed: [web2]
changed: [web1]

TASK [Standardized index.html file] ***
changed: [web2]
changed: [web1]

NOTIFIED: [restart_httpd] ***
changed: [web2]
changed: [web1] handler runs once

If both of these
tasks notifies of a
changed result,
the handler will be
notified ONCE.

changed

changed

Ansible Handler Tasks

Red Hat Ansible Platform technical deck: Create

61

 tasks:
 - name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd

 - name: Standardized index.html file
 copy:
 content: "This is my index.html file for {{ ansible_host }}"
 dest: /var/www/html/index.html
 notify: restart_httpd

TASK [Ensure httpd package is present] **
ok: [web2]
ok: [web1]

TASK [Standardized index.html file] ***
ok: [web2]
ok: [web1]

PLAY RECAP **
web2 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
web1 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

unchanged

unchanged

If neither task
notifies a
changed result,
the handler
does not run.

Ansible Variables & Loops

62

- name: Ensure users
 hosts: node1
 become: yes

 tasks:
 - name: Ensure user is present
 user:
 name: dev_user
 state: present

 - name: Ensure user is present
 user:
 name: qa_user
 state: present

 - name: Ensure user is present
 user:
 name: prod_user
 state: present

Ansible Variables & Loops

63

- name: Ensure users
 hosts: node1
 become: yes

 tasks:
 - name: Ensure user is present
 user:
 name: “{{item}}”
 state: present
 loop:
 - dev_user
 - qa_user
 - prod_user

Lab Time
Complete exercise 1.5 now in your lab environment

65

Exercise 1.6
Topics Covered:

● Templates

Ansible Variables & Templates

66

- name: Ensure apache is installed and started
 hosts: web
 become: yes
 vars:
 http_port: 80
 http_docroot: /var/www/mysite.com

 tasks:
 - name: Verify correct config file is present
 template:
 src: templates/httpd.conf.j2
 dest: /etc/httpd/conf/httpd.conf

Ansible Variables & Templates

67

- name: Ensure apache is installed and started
 hosts: web
 become: yes
 vars:
 http_port: 80
 http_docroot: /var/www/mysite.com

 tasks:
 - name: Verify correct config file is present
 template:
 src: templates/httpd.conf.j2
 dest: /etc/httpd/conf/httpd.conf

Excerpt from httpd.conf.j2

Change this to Listen on specific IP addresses as shown below to
prevent Apache from glomming onto all bound IP addresses.
#
Listen 80 ## original line

Listen {{ http_port }}

DocumentRoot: The directory out of which you will serve your
documents.
DocumentRoot "/var/www/html"

DocumentRoot {{ http_docroot }}

Lab Time
Complete exercise 1.6 now in your lab environment

69

Exercise 1.7
Topics Covered:

● What are roles?

● How they look like

● Galaxy

Role Structure

70

▸ Defaults: default variables with lowest
precedence (e.g. port)

▸ Handlers: contains all handlers

▸ Meta: role metadata including
dependencies to other roles

▸ Tasks: plays or tasks
Tip: It’s common to include tasks in
main.yml with “when” (e.g. OS == xyz)

▸ Templates: templates to deploy

▸ Tests: place for playbook tests

▸ Vars: variables (e.g. override port)

user/

├── defaults
│ └── main.yml
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

Sharing
Content

71

Ansible Galaxy

Roles, and
more

Community

Lab Time
Complete exercise 1.7 now in your lab environment

73

Exercise 1.8
Topics Covered:

● A bonus lab - try it on your own, and when

time permits

Lab Time
Complete exercise 1.8 now in your lab environment

75

Section 2
Automation Controller

76

Exercise 2.1
Topics Covered:

● Introduction to Automation Controller

What makes a platform?

77

Automation controller
Automation

hub
Automation

services catalog

Fueled by an
open source community

Insights for Ansible
Automation Platform

Ansible command line

Ansible Cloud ServicesOn-premises

Ansible content domains

Infrastructure

Cloud Network Security
Linux Windows

Content creators

Operators

Domain experts

Users

RBAC

Allow restricting playbook access to
authorized users. One team can use
playbooks in check mode (read-only)
while others have full administrative
abilities.

Push button

An intuitive user interface experience
makes it easy for novice users to
execute playbooks you allow them
access to.

RESTful API

With an API first mentality every feature
and function of controller can be API
driven. Allow seamless integration with
other tools like ServiceNow and
Infoblox.

Workflows

Automation controller’s multi-playbook
workflows chain any number of
playbooks, regardless of whether they
use different inventories, run as
different users, run at once or utilize
different credentials.

Enterprise integrations

Integrate with enterprise authentication
like TACACS+, RADIUS, Azure AD.
Setup token authentication with OAuth
2. Setup notifications with PagerDuty,
Slack and Twilio.

Centralized logging

All automation activity is securely
logged. Who ran it, how they
customized it, what it did, where it
happened - all securely stored and
viewable later, or exported through
Automation controllers API.

Automation controller

Ansible Automation Controller is a UI and RESTful
API allowing you to scale IT automation, manage
complex deployments and speed productivity.

▸ Role-based access control

▸ Deploy entire applications with
 push-button deployment access

▸ All automations are centrally logged

▸ Powerful workflows match your IT processes

What is Ansible Automation Controller ?

Project

Playbook

Anatomy of an Automation Job

Git / Subversion

Credential

Project

Playbook

Anatomy of an Automation Job

Git / Subversion

Credential

Project

Anatomy of an Automation Job

Inventory

Playbook

Git / Subversion

Credential

Project

Anatomy of an Automation Job

Inventory

Automation
controller

Playbook

Git / Subversion

Lab Time
Complete exercise 2.1 now in your lab environment

85

Exercise 2.2
Topics Covered:

● Inventories

● Credentials

Inventory is a collection of hosts (nodes) with
associated data and groupings that Automation
Controller can connect to and manage.

▸ Hosts (nodes)
▸ Groups
▸ Inventory-specific data (variables)
▸ Static or dynamic sources

Inventory

Credentials are utilized by Automation Controller
for authentication with various external
resources:

▸ Connecting to remote machines to run jobs
▸ Syncing with inventory sources
▸ Importing project content from version control

systems
▸ Connecting to and managing network devices

Centralized management of various credentials
allows end users to leverage a secret without
ever exposing that secret to them.

Credentials

Lab Time
Complete exercise 2.2 now in your lab environment

89

Exercise 2.3
Topics Covered:

● Projects

● Job Templates

Project
A project is a logical collection of Ansible
Playbooks, represented in Ansible
Automation Controller.

You can manage Ansible Playbooks and
playbook directories by placing them in a
source code management system supported
by Automation controller, including Git and
Subversion.

Everything in Automation controller revolves
around the concept of a Job Template. Job
Templates allow Ansible Playbooks to be
controlled, delegated and scaled for an
organization.

Job templates also encourage the reuse of
Ansible Playbook content and collaboration
between teams.

A Job Template requires:

▸ An Inventory to run the job against
▸ A Credential to login to devices.
▸ A Project which contains Ansible

Playbooks

Job Templates

Job Templates can be found and created by clicking the Templates
button under the Resources section on the left menu.

Expanding on Job Templates

Job Templates can be launched by clicking the rocketship
button for the corresponding Job Template

Executing an existing Job Template

New Job Templates can be created by clicking the Add button

Creating a new Job Template (1/2)

This New Job Template window is where the inventory, project and credential
are assigned. The red asterisk * means the field is required .

Creating a new Job Template (2/2)

Lab Time
Complete exercise 2.3 now in your lab environment

97

Exercise 2.4
Topics Covered:

● Surveys

Controller surveys allow you to configure
how a job runs via a series of questions,
making it simple to customize your jobs in
a user-friendly way.

An Ansible Controller survey is a simple
question-and-answer form that allows
users to customize their job runs.
Combine that with Controller’s
role-based access control, and you can
build simple, easy self-service for your
users.

Surveys

Once a Job Template is saved, the Survey menu will have an Add

Button

Click the button to open the Add Survey window.

Creating a Survey (1/2)

The Add Survey window allows the Job Template to prompt users for one or more
questions. The answers provided become variables for use in the Ansible Playbook.

Creating a Survey (2/2)

When launching a job, the user will now be prompted with the Survey. The user can
be required to fill out the Survey before the Job Template will execute.

Using a Survey

Lab Time
Complete exercise 2.4 now in your lab environment

103

Exercise 2.5
Topics Covered:

● Role based access control

How to manage access

Role-based access control

Red Hat Ansible Platform technical deck: Consume

104

▸ Role-based access control system:

Users can be grouped in teams, and roles

can be assigned to the teams.

▸ Rights to edit or use can be assigned

across all objects.

▸ All backed by enterprise authentication if needed.

● An organization is a logical collection of users,
teams, projects, inventories and more. All entities
belong to an organization.

● A user is an account to access Ansible
Automation Controller and its services given the
permissions granted to it.

● Teams provide a means to implement role-based
access control schemes and delegate
responsibilities across organizations.

User Management

Lab Time
Complete exercise 2.5 now in your lab environment

107

Exercise 2.6
Topics Covered:

● Workflows

Combine automation to create

something bigger

Workflows

Red Hat Ansible Platform technical deck: Operate

108

▸ Workflows enable the creation of powerful holistic

automation, chaining together multiple pieces of

automation and events.

▸ Simple logic inside these workflows can trigger

automation depending on the success or failure

of previous steps.

Adding a New Template

Red Hat Ansible Platform technical deck: Operate

109

▸ To add a new Workflow click on the Add button.

This time select the Add workflow template

Creating the Workflow

Red Hat Ansible Platform technical deck: Operate

110

▸ Fill out the required parameters and click Save.

As soon as the Workflow Template is saved the

Workflow Visualizer will open.

Workflow Visualizer

Red Hat Ansible Platform technical deck: Operate

111

▸ The Workflow Visualizer will start as a blank

canvas.

▸ Click the green Start button to start building the

workflow.

Visualizing a Workflow
Workflows can branch out, or converge in.

Green indicates this Job
Template will only be run if the
previous Job Template is
successful

Red indicates this Job
Template will only be run if the
previous Job Template fails

Blue indicates this Job
Template will always run

Lab Time
Complete exercise 2.6 now in your lab environment

114

Exercise 2.7
Topics Covered:

● Wrap-up

Lab Time
Complete exercise 2.7 now in your lab environment

Next steps

116

Learn more

Where to go next

Get started

▸ Workshops

▸ Documents

▸ Youtube

▸ Twitter

▸ Evals
▸ cloud.redhat.com

Get serious

▸ Red Hat Automation Adoption Journey

▸ Red Hat Training

▸ Red Hat Consulting

https://github.com/ansible/workshops
https://docs.ansible.com/
https://www.youtube.com/channel/UCPJo5UY1KsP7J1BuHmiWNzQ
https://twitter.com/ansible
https://www.redhat.com/en/technologies/management/ansible/try-it
https://cloud.redhat.com/
https://www.redhat.com/en/resources/services-journey-automation-adoption-brief
https://www.ansible.com/products/training-certification
https://www.ansible.com/products/consulting

linkedin.com/company/red-hat

youtube.com/AnsibleAutomation

facebook.com/ansibleautomation

twitter.com/ansible

github.com/ansible

117

Thank you

